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A chemically consistent graph architecture for massive
reaction networks applied to solid-electrolyte interphase
formation†

Samuel M. Blau,a Hetal D. Patel,b,c Evan Walter Clark Spotte-Smith,b,c Xiaowei Xie,c,d

Shyam Dwaraknath,c and Kristin A. Perssonb,e

Modeling reactivity with chemical reaction networks could yield fundamental mechanistic under-
standing that would expedite the development of processes and technologies for energy storage,
medicine, catalysis, and more. Thus far, reaction networks have been limited in size by chemically
inconsistent graph representations of multi-reactant reactions (e.g. A + B → C) that cannot en-
force stoichiometric constraints, precluding the use of optimized shortest-path algorithms. Here,
we report a chemically consistent graph architecture that overcomes these limitations using a novel
multi-reactant representation and iterative cost-solving procedure. Our approach enables the identifi-
cation of all low-cost pathways to desired products in massive reaction networks containing reactions
of any stoichiometry, allowing for the investigation of vastly more complex systems than previously
possible. Leveraging our architecture, we construct the first ever electrochemical reaction network
from first-principles thermodynamic calculations to describe the formation of the Li-ion solid elec-
trolyte interphase (SEI), which is critical for passivation of the negative electrode. Using this network
comprised of nearly 6,000 species and 4.5 million reactions, we interrogate the formation of a key
SEI component, lithium ethylene dicarbonate. We automatically identify previously proposed mech-
anisms as well as multiple novel pathways containing counter-intuitive reactions that have not, to
our knowledge, been reported in the literature. We envision that our framework and data-driven
methodology will facilitate efforts to engineer the composition-related properties of the SEI - or of
any complex chemical process - through selective control of reactivity.

1. Introduction

Understanding and controlling complex reactive processes is
a fundamental challenge in the development of novel chemical
technologies. While computational chemistry has provided cru-
cial insight for a broad array of reactive systems, important areas
of electrochemistry,1,2 atmospheric chemistry,3,4 and metabolic
biochemistry5–7 remain poorly understood due to their scale (in

a Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, United States.
b Department of Materials Science and Engineering, University of California, Berkeley,
CA 94720, United States.
c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
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e Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
United States. E-mail: kapersson@lbl.gov
† Electronic Supplementary Information (ESI) available: simple prerequisite
cost solving example and further details of network construction. See DOI:
00.0000/00000000.

terms of number of species and reactions between them) and ac-
companying complexity. Moreover, critical properties and dynam-
ics of such systems may only emerge on long timescales, partic-
ularly if they rely on key rare events, for instance reactions with
high kinetic barriers. Typical atomistic modeling approaches like
classical molecular dynamics (MD) and ab initio molecular dy-
namics (AIMD) are thus inherently insufficient, as they are too
costly to adequately sample these rare events. On the other hand,
chemical reaction networks, which use graph theory to define re-
lationships between molecules and reactions, are well positioned
to capture such complex long-time reactivity.

Reaction networks have the capacity to interrogate compet-
ing reaction mechanisms in complex chemical systems on long
timescales. By simplifying chemical space into a set of connected
molecule nodes and reaction nodes,8 reaction networks abstract
away the spatial interactions of three dimensional molecular
structures while preserving a realistic description of the under-
lying interconnected chemical mechanisms. Reaction networks
can be used to compare viable reaction pathways that transform
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a set of starting molecules into final products or to identify opti-
mal pathways using pathfinding algorithms.9 The cost to traverse
a given reaction can capture the relevant thermodynamics and/or
kinetics, ensuring that the “shortest" pathway (the pathway with
the lowest cost) is also the one most likely to occur. Such path-
way analysis inherently accounts for long-time behavior with-
out requiring an arduously long propagation as long as impor-
tant rare reactions are present in the network. Substantial work
has been conducted to apply reaction networks to a wide range
of scientific applications, including organic chemistry,9–12 ret-
rosynthesis,13–15 combustion,16–18 catalysis,19–21 and sugar for-
mation,22,23 as well as metabolic7,24 and prebiotic chemistry.23

However, network scale has remained fairly small; no reaction
network reported in the literature built from first principles has
included more than 1000 species or more than 10,000 reactions.8

The size of networks reported thus far has been limited in part
due to the use of graph representations that cannot capture the
chemical reality of multi-reactant reactions (e.g. A + B → C).
Such representations prevent the use of optimized pathfinding al-
gorithms. Instead, researchers employ custom approaches that
can calculate path costs while respecting reaction stoichiome-
try.25 These algorithms suffer from performance and scaling lim-
itations11,25 that have historically made it necessary to signifi-
cantly restrict network size. As a result, reaction networks have
not previously been applied to complex electrochemical or pho-
tochemical systems which may include thousands of species and
millions of reactions.

The development of reaction networks to study electrochemi-
cal processes is both highly desirable and very challenging due
to the extreme inherent complexity of such systems. For exam-
ple, the exposure of an electrolyte to highly oxidative as well as
reductive electrode materials necessitates the consideration of re-
dox reactions coupled with irreversible chemical decomposition
in a rapidly evolving local environment. These reactions form
ions, fragments, and radicals, all of which may be more stable in
solvent than they would be in the gas phase or in vacuum. Such
factors mean that a much wider range of stable and metastable
species must be included in the network than would be otherwise.
As a further complication, ions and radicals are often much more
reactive than neutral, closed-shell organic molecules,26 and their
reaction mechanisms are not as well understood,27 precluding
heuristic pruning and necessitating consideration of a vast num-
ber of reactions for each specie.

Because a reaction network capable of describing electrochem-
ical processes must include massive quantities of species and re-
actions, the use of optimized pathfinding algorithms is essen-
tial. Thus, we need a graph representation that supports general
network construction, including any reaction stoichiometry in a
chemically consistent manner. Such an approach will ensure that
all participating reaction pathways in general reaction networks
of even massive size can be tractably identified.

In this article, we will first identify underlying problems in ex-
isting reaction network architectures that can potentially produce
unphysical results and that prevent the use of optimized pathfind-
ing algorithms. We then resolve this issue through the adoption of
both a novel graph representation for reactions involving multiple

reactant species and an iterative algorithm for the calculation of
such reaction costs. To demonstrate the power of our chemically
consistent graph architecture, we apply it to a network describing
the electrochemical reaction cascade that forms the lithium-ion
solid electrolyte interphase (SEI), a nanoscale layer that is largely
responsible for battery health and capacity retention. Our ap-
proach facilitates analysis of the resulting massive reaction net-
work containing nearly 6000 species and 4.5 million reactions,
and we identify both previously accepted pathways and novel
pathways to a key SEI component.

2. Current State of Chemical Reaction Net-
work Graph Theory

Chemical reaction networks (CRNs) are graph-based data
structures encoding the reactivity of a collection of molecular
species using nodes and edges8 which can identify reaction path-
ways from starting molecules to desired products and facilitate
comparisons between those pathways. In reality, complex re-
active chemistries can explore an infinite space of possible sys-
tem states. CRNs are powerful because they reduce the traversal
through an unbounded space to a tractable pathfinding problem
on a finite graph by ignoring system history and treating each re-
action as an independent process. However, the choice of graph
representations for reactions in a CRN is non-trivial. Throughout
this work, we will depict molecule nodes as circles and reaction
nodes as triangles (Figure 1a). Molecule nodes will only connect
to reaction nodes, and vice versa. Our edges encode reaction
directionality: an edge directed into a molecule node must origi-
nate from a reaction node which yields that molecule as a prod-
uct, and an edge directed out of a molecule node must terminate
at a reaction node which consumes that molecule as a reactant
(Figure 1a). Additionally, each reaction node has an associated
cost, Φ, which must be paid in order to traverse from reactant(s)
to product(s). The cost could be a function of reaction thermo-
dynamics, kinetics, or an experimentally derived value such as
reaction yield. Summing the reaction costs along a reaction path
thus yields the total cost of performing such a sequence of reac-
tions.

We will start by considering the graph representations of three
fundamental reaction types with different stoichiometries (Figure
1b). Type I reactions are of the form A → B; Type II reactions
are of the form A → B + C; and Type III reactions are of the
form A + B → C. Each reaction implicitly defines a change in
the state of the reacting system that can be addressed by simple
accounting, where a system’s state is specified by the amount of
each species present. As a result of a reaction, the reactants must
be subtracted from the state, and the products must be added to
the state. Summing the initial system state and the system state
changes along a reaction path yields the final system state after
the reactions in the path have taken place. We note that for CRNs,
which do not consider the history of the system, the system state
can only be determined by post-hoc reconstruction.

A chemically intuitive graph representation of a reaction with
multiple reactants (e.g. Type III) fundamentally conflicts with an
underlying assumption of graph theory. Graph theory assumes
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reactant 
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Fig. 1 Standard reaction graph representation and multi-reactant pathfinding problem. a. General reaction network reaction and molecule
node representations, where molecule nodes are only connected to reaction nodes and vice versa, nodes are connected via directed edges according
to reaction directionality, and reaction nodes have a cost, Φ, which must be paid in order to be traversed. b. The three fundamental reaction types:
Type I - A reacts to B, Type II - A reacts to B plus C, Type III - A plus B react to C, where Type I and Type II are chemically consistent while Type III
is chemically inconsistent since it fails to enforce reaction stoichiometry. c. Example network composed of only Type I and Type II reactions exhibits
a chemically consistent path from A to G with only positive species amounts. d. Example network including a Type III reaction exhibits a chemically
inconsistent path from A to G in which a negative specie occurs in the system state, demonstrating that chemically inconsistent multi-reactant reaction
representations cause standard pathfinding algorithms to yield unphysical results.
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B

C

II I III

If all prerequisite costs, e.g. ΦE, are known, pathfinding works!

E

ΦPR

A + B        C III

A

Φ
A,B C

B
C

-A
-B
+C
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A
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C

-B
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Φ
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Fig. 2 Novel Type III graph representation resolves multi-reactant inconsistency and enables standard pathfinding. a. A novel fixed multi-
reactant Type III reaction representation is obtained by splitting the reaction node in two and conferring the additional cost on each to make the
other unconnected prerequisite reactant (PR) directly from starting molecules, denoted with the oval ΦPR below the reaction node. b. With the same
example network as in Fig 2d, but with our fixed Type III representation replacing the standard chemically inconsistent Type III representation, the
path from A to G no longer incurs a negative specie but instead requires paying the cost to make prerequisite E from starting molecules (ΦE). Thus,
if all prerequisite costs are obtained beforehand, standard pathfinding algorithms can be used with our reaction network representation.

that cost alone governs connected traversal; if node A is con-
nected to node C, then it is always possible to traverse the graph
from A to C, provided the cost is paid. Meanwhile, chemically,
a reaction must obey its stoichiometry (i.e. all reactants must
be present for a reaction to occur), and there must be a non-
negative amount of each species in the system. A system state
with a negative quantity of a species is thus chemically inconsis-
tent. In a Type III reaction, connectivity allows traversal from one
reactant node to the product node while ignoring the second reac-
tant, contradicting chemical laws. Such contradiction can cause
chemically inconsistent reaction paths to be selected during con-
ventional pathfinding.

When only single-reactant reactions like Type I and Type II are
used to construct a model network, an example path from node A
to node G proceeds without issue (Figure 1c). In contrast, when

a Type III reaction is included in the model network, an example
path from node A to node G yields a negative quantity of species
E in the final system state, violating chemical assumptions and
making the path chemically inconsistent (Figure 1d). This is a
fundamental problem with any current multi-reactant reac-
tion representation. To resolve this problem, it is necessary
to know the cost to create the other participating reactant
during pathfinding.

Current multi-reactant representations significantly limit the
utility of CRNs. Reaction networks are commonly used to iden-
tify the “best” or lowest-cost reaction paths from a set of starting
molecules to any target molecule(s) of interest. The ideal tools
for this task are efficient pathfinding algorithms such as Dijkstra’s
algorithm28 for single-shortest paths and Yen’s algorithm29 for
the N-shortest paths. However, as described above, these algo-
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rithms will not necessarily produce chemically valid pathways
in networks containing multi-reactant reactions. It has histori-
cally been necessary to use custom methods that have subopti-
mal performance and scale poorly with network size based on
tree traversal algorithms22, breadth-first-search25, or depth-first-
search11,25. Performant stochastic sampling approaches can in-
stead be employed,30 but they are not guaranteed to find the
true best solution(s). While these custom approaches may be suf-
ficient for relatively small and simple networks, analyzing larger
networks describing more complex systems will necessarily re-
quire the optimal performance of Dijkstra’s and Yen’s algorithms.
A multi-reactant graph representation that respects both graph
theoretical and chemical principles is clearly needed.

3. Novel Graph Architecture Resolves Multi-
Reactant Inconsistency and Enables Opti-
mized Pathfinding

Here, we present a novel multi-reactant reaction graph repre-
sentation that resolves previous inconsistencies by incorporating
the cost to make prerequisite reactants (Figure 2a). We split the
A + B → C reaction node into two nodes which both represent
the same original reaction, one node connecting A and C and
the other connecting B and C. Each reaction node’s cost includes
both the original reaction cost Φ (based on the A + B → C re-
action thermodynamics/kinetics or other cost function) and the
additional cost to create the other “prerequisite” reactant (PR)
from the available starting molecules, given by ΦPR. For exam-
ple, traversing the A→ C reaction node, for which B is a PR, costs
Φ+ΦB. The PR is implicitly created by paying the PR cost and is
then immediately consumed in the reaction; thus, the PR does not
appear in the reaction node system state change. As a result of
this transformed representation, true edge connectivity and node
cost now accurately captures the chemical reality that both reac-
tants are required for the A + B→ C reaction to proceed.

Our Type III representation enables the use of standard
pathfinding algorithms. Consider the previous pathfinding ex-
ample in which a Type III reaction yielded a negative species
quantity in the system state. Employing our fixed Type III rep-
resentation, the same example path proceeds without issue (Fig-
ure 2b). There are two critical changes: the final system state
no longer includes a negative quantity of species E, and the total
path cost additionally includes the cost of producing prerequisite
E (ΦE) as part of the last reaction. Thus, our novel Type III
representation resolves the multi-reactant reaction inconsis-
tency and enables pathfinding via optimized Dijkstra’s and
Yen’s algorithms for any chemical reaction network. However,
our representation additionally requires that prerequisite costs be
solved and included in reaction node costs before pathfinding is
performed.

We have developed an iterative algorithm to simultaneously
solve all prerequisite costs before pathfinding. Naively attempt-
ing to solve PR costs on the fly often results in unbound recursion.
Instead, we iteratively solve all PR costs with the following pro-
cedure outlined in Figure 3:

1. We calculate the shortest path from each starting molecule

to every possible molecule in the network that may act as a
prerequisite using Dijkstra’s algorithm.

2. We then identify solved PRs in which the shortest path to
that molecule node itself has no unsolved PRs.

3. If any PRs remain unsolved, we update all PR costs in the
network and continue iterating until all PRs are solved.

In this manner, PR costs at any iteration are an effective lower
bound on the true PR costs. The cost of each unsolved PR will
rise from one iteration to the next until that PR is solved, at which
point the cost remains fixed through all further iterations. Addi-
tionally, by only updating the network at the end of each iteration,
PR costs are uniquely defined and do not depend on the imple-
mentation details of Dijkstra’s algorithm such as the order that
the nodes are searched. We show an example of PR solving for
a model network in section S1 of the ESI†. While this example
and the concept of PR solving are quite simple, we note that the
PR solving process is the key to allowing optimized pathfinding in
reaction networks and is the most computationally intensive step
of our chemically consistent graph architecture.

One subtlety of PR costs is the temptation to think that a species
created incidentally as a byproduct of a type II reaction (for exam-
ple, molecule B in Figure 2b) could then be used as a prerequisite
for a later reaction, thus avoiding the need to pay ΦPR and reduc-
ing the cost of the path overall. However, a CRN-based approach
cannot accommodate such a cost reduction since system history
is ignored and reaction costs must be independent, which is fur-
ther enforced by the greedy nature of Dijkstra’s algorithm. This
is a limitation of our methodology, since real chemical processes
may contain paths where byproducts from one step are consumed
as reactants multiple steps later. However, we note that in the
chemical application considered in this work, this synergy is not
relevant to the paths identified.

4. Autonomous Identification of Optimal Re-
action Pathways in SEI Formation

Here we demonstrate the application of our chemically con-
sistent graph architecture to the formation of a particular compo-
nent of the Li-ion battery solid-electrolyte interphase. When the
electrolyte reductive stability limit is reached during the initial
charging of a Li-ion battery, a cascade of interdependent reactions
- including reduction, oxidation, bond cleavage, and bond forma-
tion - spontaneously occur to form an SEI on the battery anode
surface.31 This process is critical to cycling performance, as the
formation of a functional, passivating SEI enables many battery
technologies to operate outside of the thermodynamic stability
limit of the electrolyte.32–36 Specifically, the SEI needs to conduct
metal ions while preventing electrical conduction and remaining
chemically stable to minimize undesirable ongoing electrolyte or
anode degradation.37

Understanding the mechanisms of SEI formation is critical to
the development of battery technologies. Such understanding
could allow researchers to modify the initial battery conditions
or electrolyte composition to suppress or promote targeted reac-
tion pathways, thereby engineering and controlling the proper-
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Fig. 3 Iterative prerequisite cost solving algorithm. Starting with an initial network N and starting molecules A, we find the shortest path from A
to each specie in N. We then identify solved prerequisites where the shortest path to a given specie node itself contains no unsolved prerequisites. If
unsolved prerequisites remain, all prerequisite costs are updated according to the solve shortest paths, and another iteration is performed. Eventually,
all prerequisites will be solved and the final network will be returned.

ties and composition of the SEI. With the capability to predict
the formation of SEI components and the properties of the resul-
tant SEI based solely on the initial conditions of the electrolyte,
it would be possible to computationally screen the vast chemi-
cal space of potential electrolyte salts, solvents, and additives to
guide experimental investigations and expedite the development
of novel next-generation battery chemistries beyond lithium-ion.

Over roughly two decades of dedicated research into SEI forma-
tion, it has become accepted that lithium ethylene dicarbonate,
also known as Li2EDC or LEDC, is a major, early-formed organic
component of the interphase in Li-ion batteries, based on both
experimental and computational results.38–41 A number of path-
ways from the ethylene carbonate (EC) solvent molecule and Li+

to LEDC have been proposed in the literature. From these, two
prominent paths have emerged. In the “one-electron” path, two
reduced EC molecules, coordinated with lithium (Li+EC−), ring-
open and combine to form LEDC and ethylene.39 In the “two-
electron” path, after ring-opening, one LiEC molecule is reduced
again and decomposes to form ethylene and LiCO−3 . This LiCO−3
then attacks an EC molecule to form LiEDC−, which then coordi-
nates with a Li+ to form LEDC.38,42,43 Here, we employ a reaction
network to determine if these proposed pathways are indeed the

most thermodynamically competitive, or if there are other path-
ways that may contribute to LEDC formation.

Our reaction network methodology, based on a novel graph
representation for multi-reactant Type III reactions and an iter-
ative PR cost solving algorithm, is uniquely suited to provide in-
sights into SEI formation processes. Because the SEI forms spon-
taneously on an electrified interface in the presence of multiple
species and local environments, there is a vast number of pos-
sible reactive fragments which in turn gives rise to millions of
plausible reactions. As a result, a reaction network describing SEI
formation will necessarily be of massive scale to ensure that key
pathways are not missed, making such a network an ideal test
case for our approach. We emphasize that attempting to analyze
such a reaction network with millions of reactions is completely
unprecedented and is only feasible with optimized pathfinding
algorithms.

We have constructed a reaction network to describe SEI for-
mation using our chemically consistent graph architecture that
contains 6000 species and nearly 4.5 million reactions. We em-
ploy a thermodynamic cost function Φ =C+ e∆G/kT , where ∆G is
the free energy of the reaction and C is a constant that provides a
lower bound on reaction cost and encourages shorter paths. We
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Li+
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C

C: Add Li+

D: Remove Li+

A & D

Shortest path: 

2nd shortest: 

3rd shortest: 

4th shortest: 

5th shortest: 

Fig. 4 LEDC five shortest paths. The 2nd shortest path (purple) and the 3rd shortest path (green) were the two mechanisms previously proposed in
the literature and each contain one two-bond reaction. The shortest path (blue) and 4th shortest path (red) follow very similar mechanisms to purple
and green, respectively, but they contain a counterintuitive ring-opening step (-1.08 eV) which has not been previously considered. Finally, the 5th
shortest (gold) path exhibits both the counterintuitive ring-opening and stabilization via a transient Li-ion that has never been previously proposed.

use C = 1 in this work based on empirical investigation and the
physically reasonable result that, with this choice, one reaction
with ∆G = 0 costs an equivalent amount as two reactions with
∆G << 0. Further discussion of the cost function and our proce-
dure for network construction is presented in section S2 of the
ESI†.

After solving the prerequisites of our final network, pathfind-
ing autonomously identifies both previously reported and novel
formation mechanisms for LEDC (Figure 4). We define Li+ and
ethyelene carbonate (EC) as our starting molecules and are able
to solve all prerequisite costs in 25 iterations over the course of
14 hours on a laptop. Prior to the reactions shown in Figure 4, all

paths include the bidentate coordination of Li+ with EC followed
by reduction.

A key validation of our approach is that both previous promi-
nent mechanisms, proposed through manual investigations - the
two-electron path (Figure 4, purple) and the one-electron path
(Figure 4, green) - are recovered as our 2nd shortest and 3rd
shortest paths, respectively. The shortest and 4th shortest paths
(Figure 4, blue and red) are nearly equivalent to the 2nd and
3rd shortest paths, respectively, with the blue path being an-
other two-electron mechanism and the red path being another
one-electron mechanism. However, both include a counterintu-
itive ring-opening step that has not been previously considered
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because it is slightly less thermodynamically favorable than the
conventional ring-opening mechanism (-1.08 eV vs. -1.21 eV).
Intuitively, a chemist would select the more favorable route at a
given step, but in this case non-intuitive reactions could meaning-
fully contribute.

The 5th shortest path (Figure 4, gold) is entirely novel and
leverages a transient lithium ion to decompose ring-opened
Li+EC− exergonically. Note that decomposing ring-opened
Li+EC− in isolation is slightly endergonic according to our calcu-
lations (+0.25 eV), which may be why it has not previously been
reported. However, our procedure autonomously identified that
the coordination of an additional lithium ion simultaneous with
the decomposition yields a much more thermodynamically favor-
able reaction (-0.42 eV), perhaps making it competitive with the
other mechanisms emerging from the network. The additional
lithium ion can then dissociate simultaneously with the addition
of a ring-opened Li+EC− to form LEDC (-4.44 eV), making it a
transient participant in the gold pathway.

Since our network contains only thermodynamic information,
reaction costs are a function of free energy changes. While a more
accurate cost would be based on reaction kinetics, calculating re-
action barriers is extremely computationally intensive and chal-
lenging to automate. In the case of LEDC formation, the electron
transfer rate has further been shown to be important in deter-
mining pathway fitness;44 in principle, electron transfer should
also be accounted for. While we currently do not have any kinetic
information in our network, including such information would
not require any modification to the reaction representation or
pathfinding algorithm.

The ability to identify the best reaction paths in highly complex
reaction networks is the first step towards reverse engineering
SEI composition and complex reactivity more generally. The best
paths identified by our approach are the natural targets for re-
action engineering. Paths that yield desirable products provide a
set of reactions that can be strategically promoted, through ad-
ditives and concentration tuning, while paths that yield undesir-
able products instead identify reactions that may be selectively
hindered. Such reaction engineering leveraging knowledge of de-
sirable and undesirable reactions has already been put into prac-
tice in the field of heterogeneous catalysis,45–48 where substrates
are chosen to minimize parasitic reactions and maximize output
of the desired chemical.

5. Conclusion
We have developed a novel reaction network architecture that

accommodates any reaction stoichiometry. We split reactions with
multiple reactants into multiple reaction nodes that each include
the cost of creating the other prerequisite reactant. We have ad-
ditionally developed a procedure to iteratively solve for all pre-
requisite costs. Our approach allows optimized shortest path al-
gorithms like Dijkstra’s and Yen’s to be used to identify the best
or N-best reaction paths to any given molecule node in any chem-
ical reaction network for the first time. The ability to use these
algorithms facilitates pathway analysis on much larger chemical
reaction networks, which can describe much more complex sys-
tems, than previously possible.

Using our chemically consistent architecture, we have gener-
ated a thermodynamic network that contains nearly 6,000 species
and roughly 4.5 million reactions, the largest chemical reaction
network ever built from first principles. Pathfinding on the re-
sulting network to the early-SEI component LEDC identifies both
previously-proposed mechanisms and three new possible mecha-
nisms, all in an automated fashion. Identification of optimal paths
informs which reactions could be promoted or hindered to con-
trol the abundance of beneficial or detrimental species, a key step
towards the goal of engineering SEI composition and controlling
complex reactive systems in general.

Future work will include pathfinding to other important SEI
components and investigating the impact of additives on SEI for-
mation pathways. We are also developing an automated proce-
dure to calculate and incorporate reaction barriers into the net-
work as well as an automated approach to adding reactions with
more than two bonds changing or with one or more bonds chang-
ing simultaneously during redox processes. With this highly gen-
eral, robust, and scalable approach, it will be possible to un-
derstand and control complex chemical or electrochemical reac-
tive systems, expediting the development of novel materials and
chemical technologies in domains such as energy storage and
medicine and improving upon synthetic pathways for industrial
applications.
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